Nonlinear Eigenvalue Approach to Differential Riccati Equations for Contraction Analysis
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Convergence analysis of spectral Tau method for fractional Riccati differential equations
In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given an...
متن کاملAn Eigenvalue Problem for Nonlinear Elliptic Partial Differential Equations
where X is a real number and/(i,x) is a real-valued function defined on R1 x G with /(0, x) s 0. If/(u,x) = u, the study of the boundary value problem (1) forms the foundation of the spectral analysis of A, a problem of great importance both in mathematics and its applications. If f(u,x) does not depend on « in a linear manner, one enters the relatively uncharted world of nonlinear functional a...
متن کاملEigenvalue Problem for a Class of Nonlinear Fractional Differential Equations
In this paper, we study eigenvalue problem for a class of nonlinear fractional differential equations D 0+u(t) = λf(u(t)), 0 < t < 1, u(0) = u(1) = u′(0) = u′(1) = 0, where 3 < α ≤ 4 is a real number, D 0+ is the Riemann–Liouville fractional derivative, λ is a positive parameter and f : (0,+∞)→ (0,+∞) is continuous. By the properties of the Green function and Guo–Krasnosel’skii fixed point theo...
متن کاملNonlinear eigenvalue problems for a class of ordinary differential equations
originates in the works of Mirzov [17] and Elbert [5], who named these equations `half linear’. This theory extends various aspects of oscillation theory, such as the Picone identity [10], Sturm comparison theorem [16, 17], oscillation and nonoscillation criteria of Kneser type [16] and Hille type [14], and other oscillation criteria [3]. One branch of this research is the study of the eigenval...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2017
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2017.2655443